PHYSICAL REVIEW E VOLUME 56, NUMBER 3 SEPTEMBER 1997

Particle simulations of efficient fast electron generation near the cutoff layer
of an electrostatic wave

S. J. Karttunen and T. J. H. Bi&kangas
VTT Energy, Association EuratefMEKES, P. O. Box 1604, FIN-02044 VTT, Finland

T.J.J. Tala
Advanced Energy Systems, Helsinki University of Technology, Association E4fid®®RS, P. O. Box 2200,
FIN-02015 HUT, Finland

R. A. Cairns
School of Mathematical and Computational Sciences, University of St. Andrews, St. Andrews, Fife,
KY16 9SS, United Kingdom
(Received 24 June 1996; revised manuscript received 20 May) 1997

Fast electron generation near the cutoff of an electrostatic plasma wave is investigated by particle-in-cell
simulations and test particle calculations. Intense electron plasma waves which are excited in an underdense
plasma region propagate up the density gradient until they are reflected from the cutoff layer. The density
gradient affects the fast electron generation by the wave considerably. At low densities, the phase velocity is
fairly close to the thermal distribution, which leads to wave-particle interactions with a large electron popula-
tion. The trapped electrons are accelerated by the electron plasma wave with increasing phase velocity result-
ing in a very large and energetic population behind the cutoff layer. Since the accelerating electrons receive
energy, the wave must be damped. A simple model based on the conservation of the energy of the wave and
the trapped electrons is developed to describe the damping mechanism.
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PACS numbdis): 52.40.Nk, 52.35.Fp

I. INTRODUCTION changes the parallel phase velocifidés Another example is
staged acceleration of electrons by two or more electrostatic

Superthermal electrons play an important role in manywaves with different phase velocities. This can occur, for
fusion-related plasma experiments. One source of fast eleégastance, in simultaneous stimulated Raman forward and
trons in plasmas is nonlinear or quasilinear wave-particle inbackward scattering where the electron plasma waves are
teractions. In tokamak experiments, fast electrons are geneseparated locally5,6].
ated by various radio frequency waves used for plasma The simplest case involving variations in the phase veloc-
heating and current drive. In laser fusion, fast electrons aréy is an electron plasma wave propagating in an inhomoge-
born in wave-particle processes taking place in underdenseeous plasma. Small variations in the plasma density may
plasma regions or at critical density layers. Electrostaticchange considerably the phase velocity of a Langmuir wave.
plasma waves—for instance, Langmuir or lower hybridAt low densities, the phase velocity is fairly close to the
waves—are able to modify the electron velocity distributionthermal distribution, which leads to wave-particle interac-
around the phase velocity via the Landau resonance. Thigions with a large electron population. The trapped electrons
width of the resonance is determined by the wave spectrurare accelerated by the electron plasma wave with an increas-
or in the case of a single mode by the amplitude of the waveing phase velocity resulting in a very large and energetic

In the so-called beat-wave accelerdtb};, large amplitude population behind the cutoff layer.
electron plasma waves form the accelerating field structure Intense electron plasma waves are generated, for instance,
for electron and positron beams to reach ultrahigh energiefy parametric instabilities such as the stimulated Raman
In laser plasmas, parametric instabilities may generate largecattering or the two plasmon decay instability in the under-
amplitude Langmuir waves which produce nonthermal elecdense laser plasmas or in the beat-wave current drive of to-
trons. In magnetized plasmas, waves with high phase velockamak plasmas. Resonance absorption of an electromagnetic
ties generated by the beat-wave coupling or stimulated Rawave at the critical density is another example in which large
man scattering have been suggested for driving current iamplitude electron plasma waves and fast electrons are in-
tokamakq2,3]. In current drive, fast electrons are beneficial volved. In this case, the Langmuir waves are excited by lin-
due to their low collisionality, but in laser fusion they are ear mode conversion. Fast electron energies in resonance ab-
very damaging in terms of preheating of the pellet core.  sorption remain typically well below those obtained in the

Another means of affecting the fast electron generation istimulated Raman scattering or two plasmon decay. Fast
to vary the phase velocity of the wave. This occurs, for in-electron generation and damping of an electron plasma wave
stance, in the lower hybrid current drive where the fast elecin the resonance absorption of laser light have recently been
tron population is much larger than expected from theanalyzed by Vlasov simulationg].
launchedk; spectrum because of the toroidal upshift which  In this paper we study the acceleration of electrons in an
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inhomogeneous plasma by an electron plasma wave that éng(x) the well known Airy equatiori8,9]
reflected at the cutoff layer. The key factor is the rapidly
increasing phase velocity close to the cutoff layer where the
wave frequency equals the local plasma frequency. We ana-
lyze the fast electron generation by following test electrons
in an externally given wave, where the well known Airy \where k)z((x)=k§(1—x/xc)—k§ and kgzk§+ k2(0)=[ w?
pattern of the wave field is used in the equations of motion._wz(o)]/3vz and v, is the thermal velocity. The solution
The increase in the momentum of the electrons is measureégnpbe writtgn in terms of the Airy functions.

when they travel through the Airy-type wave packet near the 11,4 Airy function solution of Eq(1) includes both the

cutoff layer. o _ _ _ incoming and the reflected wave component and a rapidly
The fast electron generation is also investigated with Selfaecreasing part in the evanescent region behind the cutoff

coqsistent particl_e—in—ce(PIC) simula_tions, where the Lang- layer. If the wave propagates along the density gradient
muir wave is excited by an antenna in an underdense plasma{yzo)' we find from the linear dispersion relation

When the wave is reflected from the cutoff layer, the accel—vph: w/k(X)—% when x—x., which corresponds to the

d? )
Q%—kx(x)) SNng(x)=0, (1)

Airy field pattern forms a localized wave packet which

sity gradient on the fast electron energies is studied and COMateracts with the electrons traveling through it

pared with analytical estimates.

Since the electrons trapped in the wave potential receive
energy when the phase velocity increases, the wave must
lose energy and be damped. We will call this mechanism e analyze the electron behavior with simple test particle
“drag damping” because the wave with an increasing phasgimulations using an external prescribed wave field. The
velocity “drags” the electrons to higher velocities. A phe- electric field moves the electrons but is not affected by them.
nomenological model for the “drag damping” is developed We assume an electron plasma wave which is traveling par-
by considering conservation of energy of the wave and theylel to the density gradient in a linear density profile. The
trapped electrons. The parameter region where the “draghase velocity of the plasma wave is changing during propa-
damping” is important is investigated by comparing it with gation so that the wave-particle resonance condition
the linear Landau damping. Finally, the phenomenological, = w/k covers a range of values in the velocity space. This
model is compared with the results of the PIC simulations. has a clear effect on the fast electron generation around the

In Sec. Il we present briefly the basic features of thecutoff layer.

Langmuir wave propagation in a density gradient. Simple The normalized equations of motion for relativistic test
test particle calculations with an ensemble of electrons arelectrons are given by
presented in Sec. lll. Particle-in-cell simulations of the Lang-

lll. TEST PARTICLE SIMULATIONS

muir wave excitation in an inhomogeneous plasma and the dé o 12

resulting fast electron generation are analyzed in Sec. IV and dr p(1+p9) 5 @)
Sec. V. The fast electron generation in steep and gentle den-

sity gradients is compared in Sec. VI. A simple analytical dp q.E(¢,7)

model for the “drag damping” is presented in Sec. VII. Fi- dr muwc 3

nally, the results are summarized and discussed in Sec. VIII.

whereq, is the electron charge, is the electron masg is
the electric field of the wave, and=wt, £{=wx/c, and
p=+vyv/c are the normalized time, space, and momentum,

Short wavelength electron plasma wavE¢k,o) are respectively. The relativistic Lorentz  factor is
fairly heavily damped and they can only propagate short disy=[1—(v/c)?]~ Y2 The electric fieldE(&,7) for the elec-
tances. At longer wavelength&Xp<0.3, where\p is the  tron plasma wave in Eq2) is taken to be the Airy-type
Debye length, the weak Landau damping allows growth of pattern E(¢,7)= EoAi{(kox)?3(£/£.—1)}cosr, where we
the driven wave to higher amplitudes and easier propagatiohave assumel, =0.
of the plasma wave. A propagating plasma wave is very We assume that the plasma wave is excited at densities
sensitive to density variations when the wave travels nearljrom n(0)/n.=0.5 to 0.6 with an initial phase velocity of
parallel to the density gradient. A small change in the plasma ,,=0.3% which corresponds to,,=2.%, when the elec-
density has a strong influence on the phase velocity of th&on temperature i¥.,=10 keV. Figure 1a) illustrates the
wave. For the waves traveling up the density gradient, th@ormalized electric fieldjcE/m.wc of a reflecting plasma
phase velocity increases rapidly near the cutoff layer, and th&vave in an inhomogeneous plasma. The cutoff layer is at
wave is reflected. The Landau damping of the reflectedt=180 showing the Airy enhancement of the electric field.
plasma wave increases during its propagation, which leads the enhancement of the wavelength near the cutoff is clearly
full absorption of the wave energy in the low density region.seen in the field pattern of Fig(d).

We assume a linear density ramm(x)=[n. Typical behavior of the electron momentum is shown in
—n(0)](x/x;) +n(0), wheren, is the critical or the cutoff Fig. 1(b). The initial momentum ig;,= 0.3, which is inside
density of the electron plasma wave, i@,(X.) = . Taking  the trapping width of the wave potential. The trapped elec-
harmonic time dependence and Fourier transforming in tron performs bounce motion in the wave potential and is
direction we obtain from the wave equation for the amplitudeaccelerated with the increasing phase velocity. The dashed

Il. REFLECTION OF AN ELECTRON PLASMA WAVE
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FIG. 2. Final momenta versus initial momenta of an ensemble of
2000 test electrons traveling up the density gradient through the
Airy-type wave packet.

20 |
[ The ratio of the phase velocities at the cutoff layer and at
i x=0 is approximately
1.5F
i Upr(X
2 [ ph(( 0°)) =0.56 koxo) 12, (5)
gl.o 5 Uph
i The interpretation of this result is simple. The smaller the
0.5 |- initial phase velocity, the larger the enhancement of the
¥ phase velocity near the cutoff layer. The longer the plasma
: with the linear density ramp, the higher the phase velocity
0.0 [ PR TR W TR VRN T NONE SO T0 DU U SN SUN RN S SN N WY near the CUtOff |a-yer-
0 50 100 150 200 Figure 2 shows the final momengg,; of an ensemble of

xw/c 2000 test electrons traveling through the Airy-type wave
packet of Fig. 1a) from the low density side. Test electrons

FIG. 1. (a) Airy function solution of the electron plasma wave in are evenly distributed between the initial momepig=0.1
a linear density profile, antb) a trajectory of a typical single elec- and 2. A remarkable feature is that practically all electrons
tron traveling through the same wave packet. Dashed line shows tHeetweenp;,=0.3 and 0.5 are accelerated to very high mo-
phase velocity of the plasma wave obtained from the linear Bohmmenta aroung, = 1.5. The enhancement of the momentum
Gross dispersion relation. of these electrons ipy,/pin=3.8. The corresponding en-

hancement of the phase velocity estimated from &9.is
line gives the phase velocity of the electron plasma waveomewhat largemw p,(Xc)/v,n(0)=4.6.
according to the linear Bohm-Gross dispersion relation. The The effect shown in Fig. 2 is emphasized in a Maxwellian
bounce-averaged electron velocity follows closely the phasplasma which has very few particles abqve 0.5. Electron
velocity until the electron escapes from the wave potentialelocity distribution behind the cutoff layer in a Maxwellian
with a larger momentum o~ 1.8. plasma is illustrated in Fig. 3. It is obtained by assuming a

The maximum velocity of the accelerated electrons can b&axwellian distribution at the low density boundary so that
estimated from the largest wavelength in the Airy patternthe initial phase velocity i =2.%,. The Maxwellian
We estimate ,,,/2=X;—X,, wherex, andx, are the first electrons travel through the same Airy-type wave packet as
and the second zero of the field to the left of the cutoff layerin the previous case. The resulting velocity distribution has
The zeroes of the Airy function occur at;=—2.34 and an isolated bump on the tail rather than a plateau because the
a,=—4.09, where we have defined Ai)=0, see Ref. accelerating wave scrapes all electrons above a certain value
[10]. The maximum wavelength is approximately and accelerates them to very high velocitieef6v,.

The main consequence is that the number of fast electrons
may increase considerably because of this scraping effect. At
lower densities, the wave-particle interactions extend closer
to the bulk of the distribution, and a larger electron popula-
and the corresponding minimum wave number istion will be trapped and further accelerated by the propagat-
Kmin=1.8(koXc) ~ *3ko. ing wave.

N max=2(a1—a3) (XcKo) 1/3/k0, (4)
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cutoff layer of the excited plasma wave. Because of the fixed ions,
FIG. 3. Final velocity distribution of the electrons behind the the density profile does not change during the simulation.
cutoff layer obtained for an initially Maxwellian ensemble of test

electrons in the case shown in Fig. 2. shown at two different instantgo,t=82 and 353. Figure
5(b) shows the wave when it has reached the cutoff surface,
IV. PARTICLE-IN-CELL SIMULATIONS and the Airy-type pattern starts to form. The increase in the

) ) , . phase velocity due to the increasing wavelength can be seen
The interesting properties of thg fast_electron. generatiofaar the cutoff layer. The wave cannot propagate in the eva-
that were found above were also investigated with the oneyegcent region behind the cutoff and thus the noise level can
dimensional bounded electrostatic particle-in-cell simulationye eyaluated from the right-hand side of the cutoff layer.
code xpop1[11,12. The code was modified to excite the  The nojse can be further reduced from the signals by us-
electron plasma wave by an external oscillating charge of thg,g so-called interferograms which show the temporal corre-
standing wave formpo(x)sin(kx)cost), wherepg(x) is lo-  |ation between a sinusoidal reference signal and an electro-

calized close to the low density boundary. In the preseniaiic wave. Following Abe and Itatafi3] we define the
simulation, the width of the antenna was two wavelengths. jnterferograms as

In the PIC simulation described below, the frequency of
the plasma wave wae=1.106w,o, wherew,q denotes the 2 (v
plasma frequency at the location of the antenna. The wave Es(x,t)= T_J’F sinfw7)E(x,7)d7, (6)
number launched by the antenna waa po=0.25, where e

\po refers to the Debye length at the location of the antenna. 2 rt
The wave number is low enough in the low density side of E.(X,t)=— cofwr)E(X,7)d7, @)
the plasma slab to allow the wave propagation up the density TeJt—7,

gradient. The distance between the center of the antenna a
the cutoff layer was”'=163\po, and the cutoff layer was
located atx.= 196\ . The scale length of the inhomogene-

ity wgsneol'n(’eO.:734)\D0, whereng andng are the density 5o chosemwr.=8m. The decrease of the noise level be-
and its derivative at the antenna, respectively. A fixed I0Nind the cutoff layer is quite clear

background was assumed. The simulation geometry and the The interferograms are applied to study the dispersion

density profile are illustrated in Fig. 4, which shows the 10- o5 4 cteristics of the plasma wave in an inhomogeneous
cations of t.he antenna and the_cutoff_ surfgce. . . __plasma. The wave number and the phase velocity of the elec-

A generic problem .Of PIC simulations IS the high OIS ron plasma wave in the density ramp were measured by
level caused by the fairly small number of discrete part'desdetermining the phase of the wave from the interferograms

The noise level reduces with increasing number of macropalyefined in Eqs(6) and (7). First, the phase of the wave was
ticles, which in the present simulation was 210 particles pef. . 1ated from ' ’

cell corresponding to the total number of 315 000 electrons
and ions. In order to reduce effects caused by the high den- Ec(x,1)
sity boundary, the simulation box was chosen to extend well @(x)zarctarE E.(xt )
beyond the cutoff layer. The total length of the simulation s
box wasL=653\,. To keep the noise level low enough, The wave number is then
fairly intense plasma waves were generated in the present
simulation. Consequently, a perturbation in the charge den-
sity having an amplitude of about 1.8% of the background k(x)= Ax ©
ion charge density was used as an antenna.

Figure 5 illustrates the penetration of an electron plasmand the phase velocity is obtained fram(x) = w/k(x). The
wave towards the cutoff layer. The electrostatic field isnumerical differentiation in Eq9) was performed by fitting

%erew is the frequency of the antenna, and the correlation
time 7. was typically chosen to be a few periods of the wave.
An interferogram of the field is shown in Fig(dJ, where we

®
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FIG. 5. Electric field of the propagating electron plasma wave in  FIG. 6. Measurement of the phase velocity in the PIC simula-
an inhomogeneous density profile at tif® w,t=82 and(b)  tion. (a) The phase factor obtained from the interferografnsThe
wpot=353. The corresponding interferogram is shown at title  wave number obtained by differentiatioft) The corresponding
wpot=353. phase velocity; the dashed curve is the estimate obtained from the

Bohm-Gross dispersion relatiom ot =353, w7, =8).
a straight line to 50 values @ (x;) by the method of least
squares, and by calculating the slope of the line. This methodhind in the interpretation of Fig.(6). Direct measurement
was found to reduce noise and oscillation in the derivative.of the last half wavelength in Fig.(&) gives the maximum

The phase of the wave in Fig. 5 is shown in Figa)6The  phase velocityw ,(X;) =8.7v, which is in good agreement
slope of the phase decreases near the cutoff layer, and cowith the above analysis.
respondingly the magnitude of the wave number also de- The increase of the phase velocity near the cutoff surface
creases, see Fig(l§. The phase velocity is shown in Fig. is found to be similar to the test particle simulations de-
6(c), and the phase velocity obtained from the Bohm-Grosscribed in Sec. Ill. Therefore somewhat similar generation
dispersion relation is shown by a dashed line. The agreemeand acceleration of fast electrons can be expected in the PIC
between these two curves is surprisingly good. simulation.

In the above analysis, the WKB approximation is used,
and it breaks down near the cutoff layer. The maximum
phase velocity of the wave shown in Fig. 5 should be esti-
mated from Eq.(5). The result isvg(Xc)/v pn(Xe) =1.93,
wherex, denotes the location of the center of the antenna. A basic difficulty with PIC simulations is that there are
This corresponds to,(Xc) =8.%v¢, which should be keptin only a few particles in the tail of a Maxwellian velocity

V. FAST ELECTRON GENERATION
IN PIC SIMULATIONS
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FIG. 7. Phase-space plot including a test electron ensemble for the fast electron diagnostics. The test electrons start t@move at
wpot=329, and the following four figures show the propagation of the ensemifhg at,ot =345, (c) 348, (d) 350, and(e) 353. The solid
curve shows the phase velocity estimated from the Bohm-Gross dispersion relation, and the dashed curves show the trapping widths.

distribution. This problem was circumvented by following an 5.6v, which is just above the local phase velocity. Initially,
ensemble of test particles moving in the self-consistent fieldhe test electron ensemble was located just on the right-hand
obtained from the PIC simulation. A similar idea has previ-side of the antenna to avoid direct acceleration by the an-
ously been applied to Vlasov simulations by Ghizzival. tenna itself. The spatial width of the ensemble was
[14]. The test electrons experience the self-consistent field d.131\ o, where), is the wavelength of the plasma wave at
plasma particles but their effect on the field is not taken intathe center of the antenna. The test electrons are seen as a
account. Since the test particles do not contribute to thélack rectangle in Fig. (3), where the phase velocity of the
background field, they do not generate any artificial instabili-wave estimated from the Bohm-Gross dispersion relation is
ties. The test particles can be loaded to any volume in thehown by the solid curve. The trapping width calculated
phase space, and they can be let free at any time during tieom the wave envelope at timepot=353 is shown by
simulation. This is a valuable tool for PIC simulations of the dashed lines.
tail phenomena which often suffer from poor statistics. In Fig. 7, the acceleration of the test electrons when they
In the PIC simulation, the phase-space behavior of twapproach the cutoff layer is shown in detail. The electrons
ensembles of 20 000 test electrons was followed. The tesbllow the increasing phase velocity of the wave quite accu-
electrons were let free at time,t=329 when the electron rately. When they arrive at the cutoff layer xat= 196\ pq,
plasma wave was fully developed. The initial velocities ofthey are detrapped from the wave potential and start to
the test electrons were evenly distributed betweendahd  stream freely in the region where the wave cannot penetrate.
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FIG. 8. The time evolution of the average kinetic energy of the  FIG. 9. Interferogram of the wave amplitude in the gentle den-

test particle ensemble shown in Fig. 7. sity gradient at timew ot =1643.

At this point their velocities are betweerv7 and 1@, In the simulation with a gentle density gradient, the wave
which is in agreement with the maximum phase velocity ofParameters at the antenna were the same as in the simulation
vpn(Xc) = 8.5, calculated in the end of Sec. IV. discussed abové.e., kyhpo=0.25). The distance between

The trapping width around the phase velocity for the electhe antenna and the cutoff layer, however, was661\ o,
trons is given a®,=|2q.E/kmy|*%. In the present simula- WhICh is a'pprox[mately by a factor of 4 larger than |n.the
tions, a typical electric field just behind the antenna is abouprevious simulation. Therefore the scale length of the inho-
|geE|/mewc=0.025, which corresponds to the trapping mogeneity also was largefyg/Ng= 2937 po. According to
width of v,=2.3, and the upper limit of 6z, for the Ed. (5), the expected enhancement of the phase velocity
trapped electrons. The test electrons reach, however, mugiould in this case be much larger than in the previous simu-
higher velocities up to 1, and therefore the acceleration 1ation: v yy(Xc)/vpr(Xo) = 3.1. The number of electrons in this
is caused by the increasing phase velocity near the cutoffimulation was 1 500 000, which is 333 electrons per cell.
layer. The electric field obtained in a gentle density gradient is

The phase-space plots in Fig. 7 also show some accelerBlustrated in Fig. 9. In contrast to the previous simulation,
tion of background electrons and generation of a small poputhe linear Landau damping is now important because we
lation of fast background electrons. The amplitude of thehave made the distance from the antenna to the cutoff layer
antenna is large enough to trap some thermal electrons frofAnger. The linear Landau damping length for the wave with
the background distribution even though PIC codes withoukohpo=0.25 is L p=313\po, Where we have defined
test particles have a fairly poor resolution in the tail phenomL p=v4/y, and y is the imaginary part of the frequency.
ena. Since the distance from the antenna to the cutoff layer is

The time evolution of the kinetic energy of the test elec-larger by a factor of 2 than the damping length, the wave
trons is shown in Fig. 8. The kinetic energy of the test popu-amplitude decreases near the cutoff layer.
lation has increased roughly by a factor of 4 when the elec- The generation of fast electrons was again investigated by
trons arrive at the cutoff layer at timeyot=353. After this, following an ensemble of test electrons that were initially
the kinetic energy remains almost constant because the tdcated near the antenna with evenly distributed velocities
particles have moved behind the cutoff surface where there igetween 3.6, and 4.9.. The time evolution of the kinetic
no electron plasma wave accelerating them. In the end ofnergy of the test electrons that were let free at time
Sec. IV, we estimated that the enhancement of the phasepot= 1640 is shown in Fig. 10. The increase of the kinetic
velocity is v p(Xc)/vph(Xo) = 1.9, which corresponds to en- energy is modest in this case because the wave is signifi-
hancement of the kinetic energy by a factor of 3.7. This is in
fairly good agreement with the result shown in Fig. 8. 3

o

VI. EFFECT OF THE STEEPNESS
OF THE DENSITY GRADIENT

N

According to the simple scaling law in E¢p), there are
two factors that affect the enhancement of the velocity of the
trapped electrons in a linear density gradient; first, the phase
velocity (or the wave numberin the region where the elec-
tron plasma wave is generated; second, the distance from this
region to the cutoff layer, i.e., the magnitude of the density 01650 1700 1750 1800
gradient. In the following, we investigate the effect of the Time . t
density gradient on the fast electron generation by repeating P
the above simulation in a plasma with a gentle density gra- FIG. 10. The time evolution of the average kinetic energy of a
dient and in a homogeneous plasma. test particle ensemble in the gentle density gradient.

Kinetic energy Euin'Exing
- (4]

o1
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FIG. 11. Velocity distribution of the electrons in the region i 13 The time evolution of the average kinetic energy of a
496\ =X 1487\, at timew,ot = 1643 in the gentle density gra- test particle ensemble in a homogeneous plasma.
dient.

ity. Since these electrons were found to gain energy, the

cantly damped before the cufoff layer. Therefore a large part ove must be damped. In the following, we will present a
of the electrons becomes detrapped before they are accel?fﬁenomenological model for this damping mechanism,
ateg. on of the fast back del which we will call “drag damping” because the wave with
_ So0me generation of the fast background electrons occurg, increasing phase velocity drags the electrons to higher
in this case because of the Landau damping of the wave. Alelocities

time wyot=1643, a plateau is formed in the velocity distri-
bution of the background electrons as is shown in Fig. 11. A “Drag d i of & L .
Note that the fast electrons generated in the underdense - Prag damping” of a Langmuir wave
plasma travel to the region behind the cutoff layer with ve- Consider a wave with a slowly varying amplitude and
locity that is approximately equal to the phase velocity of thewave number:
wave. Therefore the velocity distribution has been plotted for
the region 498 pp<x<1487 po. &(x,t)=E(x)cog k(x)x— wt]. (10)

In a homogeneous plasma, the acceleration caused by t : _
increasing phase velocity should disappear. The Landargrr:grrgg (;Er)](si(:; ?26 wave is5,(x) =vg(x) W(x), where the
damping of the wave launched into a homogeneous plasma

with wave numbekgh po=0.25 is illustrated in Fig. 12. The w2(X)
test electrons were again initially located near the antenna W(X)=—go| 1+ P E2(x). (11)
with velocities between 35 and 4.9, and they were let 4 w?

free at timew,ot=2300. As was expected, their energy did

not increase when they traveled through the simulation box, Ve first consider the propagation of the wave in the ab-
sence of damping. In steady state, we must then have con-

as can be seen from Fig. 13. X X
stant energy fluxS,(x) in the region B=x=<x.. We can

VIL. A PHENOMENOLOGICAL MODEL solve for the wave amplitude, which is

FOR THE “DRAG DAMPING” 2

2u¥(x)—3’

Uo
u(x)

(12

In the test particle calculations of Sec. lll and PIC simu- EﬁD(X):ES(

lations of Secs. V and VI, some of the electrons were trapped

in the potential well of a wave with increasing phase veloc-where the subscript “ND” stands for “no damping,” and
Ey is the wave amplitude at=0. The normalized phase

& 003 velocities are
8
g 0.02 v (X) 3n 1/2
m u(x)=-—"= =( - ) , (13
g 0.01 | Ve Ne—Ne(X)
©
o A ‘ 1/2
> 0 ity | ‘ ! vor(0) 3n
g Il Up= 2 =( — ) , (14
& -0.01 Ve N.—Ng
=
2 002 wheren, andn, refer to the electron densitiesxat 0 and at
é’ the cutoff layer, respectively.
—0.03O a _— pr 1500 With the aid of Egs(13) and (14) the amplitude in Eq.
Spatial coordinate x/A, (12) can be written as
L ne—ng Y3 ng+n
FIG. 12. Interferogram of the wave amplitude in a homogeneous E2 ()= E2 c '0 c''o (15)
plasma at timew,ot=2137. ND %l ng—ng(x) Ne+Nne(x))
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In a linear density gradient, we obtain 2.0 -
-1 -1/2

Ne—Ng X X « ]

E25(X)=E2 1+°——) 1——) . (16 =15 -

ND(X) 0 Ne+ Ny Xc X, (16) @c 1.5 )
_ . S
Equations(12)—(16) describe the enhancement of the wave Y

amplitude when the group velocity decreases near the cutoff 'g 1.0 1
layer. =
Consider next those electrons that are trapped and travel g‘

with the wave when the phase velocity increases. Averaging < 0.5 1

over the bounce motion of the electrons we find that their
energy flux is 0.0
1 0.0 0.2 04 0.6 0.8 1.0
Sp(X) = 5 NyMe Sh(%), 17 Spatial coordinate x/x,

where n,, is the density of the trapped electrons traveling FI_G. 14. Th_e wave amplitude near the critical layer, when_the
trapping factor is =0, 0.01, 0.035, 0.07, 0.15. Only drag damping

with the wave. For simplicity, we shall assume that the den- k
sity of the trapped electrons is constant, i.e., it does not deS 1ken into accountkoh po=0.25,n/nc=0.82).

pend onx. This assumption is valid only if the wave ampli-

tude does not vary too much during the propagation. We can Rp(X)=1— Sp(X) —$p(0) (24)

then estimate S,(0)
VpH(0) +0(0) Note that we obtain the nondamped result in Edp) if no
Ny= noJ f(v)dv, (18 electrons are accelerated with the wave, S3(x)=S,(0).
vph(0)=v4(0) The damping factor can be written as
wherevy, is the average trapping width. u(x)\3
Whenf(v) is the Maxwellian distribution, the integral in Rp(X)=1-rg u_) —-11, (25

Eq. (18) can be written in terms of the error function:

where ry is the initial ratio of the energy fluxes:
ro=S,(0)/Sy(0). In alinear density gradient, we obtain

x | —372
1-— —1|.
XC

The factorr is obtained for any density profile with the

1
r‘trZEnO

Uog
— + \UgW,
\/E ovvo

erf

NER

(19 Rp(X)=1-rq (26)

where the normalized oscillation velocity is

Vosd 0) ek, aid of Egs.(11) and(17). We find
Wo=—"——=_——. (20
Ve e@le 2 Uy ui—3 n, @7
r =5 5 - 5 _ s
In the limit of a small trapping width u,/ve= \2UgW, ® 3w22u2-3No
<Up), We obtain by the Taylor expansion the expected re-
sult: wheren,, is given by Eq.(19) or (21). By using the Bohm-
Gross dispersion relations in Eq43) and(14), the damping
2n, factor in Eqs.(25—(27) can be written in terms of the den-
Ny=2Nof (v pr(0))v(0) = —= (UgWo) Y2exp( — uj/2). sities:
N
(21) 6 n -2 n -1 n
_ , . r0=—2(1— —0) (1+ —°> s (28)
Since some of the electrons are accelerated with the in- Wg c No/ No

creasing phase velocity, they must obtain energy from the _ ) _
wave. Therefore, the wave must be damped. Let us assume The effect of drag damping on the wave amplitude is
for a while that all other damping mechanisms can be nelllustrated in Fig. 14 for different amounts of trapped elec-

glected. In steady state, we then have trons traveling with the wave. In the undamped case
(ro=0), the amplitude obtained from the WKB calculation
Su(X) + Sy(x)= const. (22)  diverges near the cutoff layer. When the energy of the
trapped electrons is a few percent of the wave energy, the
Solving again for the amplitude we obtain wave is significantly damped near the cutoff layer.
Since the phase velocity obtained from the WKB approxi-
E2(x)=EZp(X)Rp(X), (23)  mation approaches infinity near the cutoff layer, E@5)

and (26) overestimate the strength of the effect. The accel-
where the damping factor is eration of the electrons and the damping stops at the point
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where the phase velocity achieves its maximum value given N .
in Eq. (5. In WKB approximation, this phase velocity is d “~. R (a)
achieved at =) 084 S eV
& VTR
Xmax —-92/3 w l{DllL \
~1-0.31(koX,) 22 (29 £ 0.6 \
c S \
: \
Taking the parameters of the PIC simulation in Sec. V, we “;00.4 i \\
obtain Xpax/X.=0.97. E \
Note that in the derivation of drag damping we have used goz i \
very general energy conservation arguments which apply to &
any slowly varying density profile. The only limitation is the ~_
WKB approximation in Eq(10). 0.0 T T T T
0.0 0.2 04 0.6 0.8 1.0
B. Comparison with the Landau damping Spatial coordinate x/x,
Drag damping is important only in situations where it is 1.0
stronger than other damping mechanisms. In the following, B ’ (b)
we compare drag damping with the linear Landau damping. [~
Assume for a while that the linear Landau damping is the 508
only damping mechanism. Then E3) should be replaced f
by 506
E2(x) = EZp()RL(X), (30 & ] S R
E,)OA
where E_
R.(x) =ex 21 (¥)], (3D) 3 0.2
X 0.0 T T T T T T T T T
1(x)= fo ki(£)d¢. (32) 00 02 04 06 08 10

Spatial coordinate x/x,

The imaginary part of the wave number is
ki(x) = ¥(X)/vg(x), where y is the imaginary part of the
frequency.

At small values of the wave numbekXy=<0.25), the
damping decrement can be approximated as

FIG. 15. Damping factors near the critical layer in steep and
gentle density gradients. Effects of drag dampidgshed ling
Landau dampingdotted ling, and their combinatiofsolid line) are
shown when the length of the plasma (@ x./\p =180, (b)
XC/}\D,C:720 (ko)\DOZO.ZS,rO:O.O44).

4
y(X)=— %\/gwp—(x)exq —u(x)%/2]. (33

K3(x)0? —exy —uj/2]}, (36)

In Eq. (33), we approximatewg(x):w“, which overesti-  which can again be written in terms of the densities by using

mates the Landau damping. The imaginary part of the wav&gs.(13) and (14).

number is then Drag damping can be considered important when the
damping factor in Eq(25) is of the same order as the Landau
damping factor in Eg(31). Often we will have both damping
mechanisms present, and instead of E@S) and (30) we
have to estimate the amplitude from

ki(x)=— 1\/E)\lu“(x)exq —u?(x)/2] (39
i 6 2 D,c ’

wherelp . is the Debye length at the cutoff layer.
With the aid of the Bohm-Gross dispersion relation, we

now obtain E%(X) = ERp(X)Rp(X)R(X). (37)
1\/; Ne (uvix 1 The damping factors in linear Landau damping and drag
l(x)==5 2% Juz n’(x) exp—2z/2)dz. (35  gamping are illustrated in Fig. 15 for steep and gentle density
f 0 e

gradients. The linear Landau damping is important only in

If we assume that the spatial derivative of the density doed€ low density region where the wave number is close to its

not vary too much n (x) = consi, we can take it outside the initial value ko po=0.25. When the wave has propagated in
integral. We then ogtain the high density region and the wave number is small enough

(kAp<<0.20), no damping occurs any more. In the steep
p n density gradient of Fig. 18), the region where Landau
[(X)=— \ﬁ( ,—C>{exp[—u2(x)/2] damping is importanfi.e., kA po>0.20) is so short that the
2 Ne(Xc)Ap c damping factor saturates at the leveRyf=0.8. In the gentle
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The simulations show clearly that the electrons trapped

1.0 into the wave potential at lower densities travel trapped with
the wave, and are further accelerated when the plasma den-
= 08 1 sity and the phase velocity of the wave increase. This leads
= 0.01 to considerably higher electron energies than in a homoge-
& 0.6 4 neous plasma where the phase velocity is constant and the
= upper limit of the electron velocity is determined by the trap-
£ o4 - 0.05 ping width in velocity. The enhancement of the phase veloc-
= ity and the velocity of the trapped electrons was found to be
5 0.2 - 0.2 approximately v py(Xc) /v pr(0)=0.56(koXc) >, where x; is
the length of the underdense plasma dqdis the initial
wave number.
0.0 T

— ¥ T T PIC simulations were performed in both steep and gentle
0.0 02 04 0.6 0.8 Lo density gradients. In a steep density gradient, the trapped
Spatial coordinate x/x, electrons were found to follow the increasing phase velocity
of the wave. Behind the cutoff layer, the velocities of the
FIG. 16. The wave amplitude near the critical layer, when the@Ccelerated electrons were found to be in rough agreement
trapping factor ig,=0.01, 0.05, 0.2. Both drag and Landau damp- with the enhanced phase velocity obtained from the formula
ing are taken into account kf\po=0.25, ny/n,=0.82, given above. Novel test particle diagnostics were used in the

Xe/\p ¢=720). PIC simulations to follow the acceleration of an ensemble of
trapped test electrons through the cutoff layer.

density gradient of Fig. 16), Landau damping is efficient in In a gentle density gradient, the linear Landau damping

a longer region and the saturation leveRs=0.4. was found to be important because the Landau damping

In Fig. 15, the drag damping is most efficient near thelengthL,p=v,/y was small compared to the length of the
cutoff layer where the damping fact&®, decreases to zero underdense plasma, i.e.,p<X.. Since the wave was al-
in both cases. The total damping given by the product of theeady damped when it reached the cutoff layer, the genera-
damping factor} Rp is dominated by the Landau damping tion of fast electrons was not very strong.
in the low density region and by the drag damping near the Note that in the calculations presented above the initial
cutoff layer. In a gentle density gradient, only a smallwave number wago\po=0.25. If a smaller wave number
amount of energy is left in the wave to accelerate electrongag peen chosen, for instanégh o= 0.20, the linear Lan-
near the cutoff layer because most of the energy is alreadyy; gamping would not have been important even in fairly
absorbed in the low density region. o gentle density gradients. This could make it possible to ob-
The steep density gradient in Fig.@bis similar to the i 4 cceleration also in these cases. Such simulations would

density gradler}t of the simulations in Secs. IV and V, wher e, however, very demanding because of the large number of
strong generation of fast electrons near the cutoff layer was_’.. . "
found. The result in Fig. 18) is in qualitative agreement particles needed in long plasmas. In addition, the small group

with the results of the PIC simulations because the dra elocity of the wave with a small wave number would lead

damping is the dominating damping mechanism. The gentl o very long simulations. . .
density gradient in Fig. 16) corresponds to the density gra- _ >Nce the electrons trapped in the wave potential were
dient in Sec. VI, where the generation of fast electrons wafound to gain energy, the wave must be damped. We have
found to be weak. This is again in qualitative agreement wittF@lled this damping mechanism drag damping because the
the result shown in Fig. 1B), where the wave is damped Wave with an increasing phase velocity drags the electrons to
mainly by linear Landau damping. higher velocities. A phenomenological model for the drag
The wave amplitude obtained from E@7) is illustrated ~damping was presented which describes the energy balance
in Fig. 16 in the case of a gentle density gradient. In the lowbetween the wave and the accelerating electrons in a steady
density region, the linear Landau damping is the dominatingstate. The strength of the drag damping was compared with
effect. At medium densities, the Airy swelling caused by thethe linear Landau damping which was found to dominate in
decreasing group velocity starts to be important. Near thgentle density gradients if the initial wave number is large
critical layer, the drag damping dominates. (kohpo=0.22). The phenomenological model was found to
be in a qualitative agreement with the PIC simulations. The
model could be improved by taking into account that the
changes in the wave amplitude lead to changes in the trap-
Particle-in-cell simulations of fast electron generation byping width and in the number of the trapped electrons. This
a propagating electron plasma wave in an inhomogeneousprovement would lead to a set of coupled differential
plasma have been performed. The density profile was takeequations describing the wave-particle interaction near the
linear so that the phase velocity of the electrostatic plasmautoff layer.
wave varied locally. Self-consistent PIC simulations were The present test particle model and the PIC simulations
complemented by simple test particle calculations with a preare relevant to the nonlinear laser-plasma interactions in the
scribed electrostatic wave having a form of the Airy func-underdense plasma region where large amplitude Langmuir
tion. waves are generated by parametric instabilities. The analysis

VIIl. SUMMARY AND DISCUSSION
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shows that the fast electron properties may change consider- ACKNOWLEDGMENTS
ably in the presence of a density gradient as is the case in any T.J.H.P. and R.A.C. are grateful to SILASI, the European

realistic conditions. The main result is that the number ofr\r Network on Superintense LAser pulse-Solid Interac-
very fast electrons may increase substantially because gbn, on creating fruitful collaboration. We would like to
lower densities the wave-particle interaction takes placehank the Plasma Theory and Simulation Grd@pofessor
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further accelerated by the propagating wave. ing us with their 1d3v PIC codgPDP1
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