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Particle simulations of efficient fast electron generation near the cutoff layer
of an electrostatic wave
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Fast electron generation near the cutoff of an electrostatic plasma wave is investigated by particle-in-cell
simulations and test particle calculations. Intense electron plasma waves which are excited in an underdense
plasma region propagate up the density gradient until they are reflected from the cutoff layer. The density
gradient affects the fast electron generation by the wave considerably. At low densities, the phase velocity is
fairly close to the thermal distribution, which leads to wave-particle interactions with a large electron popula-
tion. The trapped electrons are accelerated by the electron plasma wave with increasing phase velocity result-
ing in a very large and energetic population behind the cutoff layer. Since the accelerating electrons receive
energy, the wave must be damped. A simple model based on the conservation of the energy of the wave and
the trapped electrons is developed to describe the damping mechanism.
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PACS number~s!: 52.40.Nk, 52.35.Fp
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I. INTRODUCTION

Superthermal electrons play an important role in ma
fusion-related plasma experiments. One source of fast e
trons in plasmas is nonlinear or quasilinear wave-particle
teractions. In tokamak experiments, fast electrons are ge
ated by various radio frequency waves used for plas
heating and current drive. In laser fusion, fast electrons
born in wave-particle processes taking place in underde
plasma regions or at critical density layers. Electrosta
plasma waves—for instance, Langmuir or lower hyb
waves—are able to modify the electron velocity distributi
around the phase velocity via the Landau resonance.
width of the resonance is determined by the wave spect
or in the case of a single mode by the amplitude of the wa

In the so-called beat-wave accelerator@1#, large amplitude
electron plasma waves form the accelerating field struc
for electron and positron beams to reach ultrahigh energ
In laser plasmas, parametric instabilities may generate la
amplitude Langmuir waves which produce nonthermal el
trons. In magnetized plasmas, waves with high phase ve
ties generated by the beat-wave coupling or stimulated
man scattering have been suggested for driving curren
tokamaks@2,3#. In current drive, fast electrons are benefic
due to their low collisionality, but in laser fusion they a
very damaging in terms of preheating of the pellet core.

Another means of affecting the fast electron generatio
to vary the phase velocity of the wave. This occurs, for
stance, in the lower hybrid current drive where the fast el
tron population is much larger than expected from
launchedki spectrum because of the toroidal upshift whi
561063-651X/97/56~3!/3515~12!/$10.00
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changes the parallel phase velocities@4#. Another example is
staged acceleration of electrons by two or more electrost
waves with different phase velocities. This can occur,
instance, in simultaneous stimulated Raman forward
backward scattering where the electron plasma waves
separated locally@5,6#.

The simplest case involving variations in the phase vel
ity is an electron plasma wave propagating in an inhomo
neous plasma. Small variations in the plasma density m
change considerably the phase velocity of a Langmuir wa
At low densities, the phase velocity is fairly close to th
thermal distribution, which leads to wave-particle intera
tions with a large electron population. The trapped electr
are accelerated by the electron plasma wave with an incr
ing phase velocity resulting in a very large and energe
population behind the cutoff layer.

Intense electron plasma waves are generated, for insta
by parametric instabilities such as the stimulated Ram
scattering or the two plasmon decay instability in the und
dense laser plasmas or in the beat-wave current drive o
kamak plasmas. Resonance absorption of an electromag
wave at the critical density is another example in which la
amplitude electron plasma waves and fast electrons are
volved. In this case, the Langmuir waves are excited by
ear mode conversion. Fast electron energies in resonanc
sorption remain typically well below those obtained in t
stimulated Raman scattering or two plasmon decay. F
electron generation and damping of an electron plasma w
in the resonance absorption of laser light have recently b
analyzed by Vlasov simulations@7#.

In this paper we study the acceleration of electrons in
3515 © 1997 The American Physical Society
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3516 56KARTTUNEN, PÄTTIKANGAS, TALA, AND CAIRNS
inhomogeneous plasma by an electron plasma wave th
reflected at the cutoff layer. The key factor is the rapid
increasing phase velocity close to the cutoff layer where
wave frequency equals the local plasma frequency. We a
lyze the fast electron generation by following test electro
in an externally given wave, where the well known Ai
pattern of the wave field is used in the equations of moti
The increase in the momentum of the electrons is meas
when they travel through the Airy-type wave packet near
cutoff layer.

The fast electron generation is also investigated with s
consistent particle-in-cell~PIC! simulations, where the Lang
muir wave is excited by an antenna in an underdense plas
When the wave is reflected from the cutoff layer, the acc
eration of an ensemble of test electrons traveling through
cutoff is investigated. The effect of the steepness of the d
sity gradient on the fast electron energies is studied and c
pared with analytical estimates.

Since the electrons trapped in the wave potential rece
energy when the phase velocity increases, the wave m
lose energy and be damped. We will call this mechan
‘‘drag damping’’ because the wave with an increasing ph
velocity ‘‘drags’’ the electrons to higher velocities. A phe
nomenological model for the ‘‘drag damping’’ is develope
by considering conservation of energy of the wave and
trapped electrons. The parameter region where the ‘‘d
damping’’ is important is investigated by comparing it wi
the linear Landau damping. Finally, the phenomenolog
model is compared with the results of the PIC simulation

In Sec. II we present briefly the basic features of t
Langmuir wave propagation in a density gradient. Sim
test particle calculations with an ensemble of electrons
presented in Sec. III. Particle-in-cell simulations of the Lan
muir wave excitation in an inhomogeneous plasma and
resulting fast electron generation are analyzed in Sec. IV
Sec. V. The fast electron generation in steep and gentle
sity gradients is compared in Sec. VI. A simple analytic
model for the ‘‘drag damping’’ is presented in Sec. VII. F
nally, the results are summarized and discussed in Sec.

II. REFLECTION OF AN ELECTRON PLASMA WAVE

Short wavelength electron plasma wavesE(k,v) are
fairly heavily damped and they can only propagate short
tances. At longer wavelengths (klD,0.3, wherelD is the
Debye length!, the weak Landau damping allows growth
the driven wave to higher amplitudes and easier propaga
of the plasma wave. A propagating plasma wave is v
sensitive to density variations when the wave travels ne
parallel to the density gradient. A small change in the plas
density has a strong influence on the phase velocity of
wave. For the waves traveling up the density gradient,
phase velocity increases rapidly near the cutoff layer, and
wave is reflected. The Landau damping of the reflec
plasma wave increases during its propagation, which lead
full absorption of the wave energy in the low density regio

We assume a linear density rampn(x)5@nc
2n(0)#(x/xc)1n(0), wherenc is the critical or the cutoff
density of the electron plasma wave, i.e.,vp(xc)5v. Taking
harmonic time dependence and Fourier transforming iny
direction we obtain from the wave equation for the amplitu
is
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dne(x) the well known Airy equation@8,9#

S d2

dx2
1kx

2~x!D dne~x!50, ~1!

where kx
2(x)5k0

2(12x/xc)2ky
2 and k0

25ky
21kx

2(0)5@v2

2vp
2(0)#/3ve

2 and ve is the thermal velocity. The solution
can be written in terms of the Airy functions.

The Airy function solution of Eq.~1! includes both the
incoming and the reflected wave component and a rap
decreasing part in the evanescent region behind the cu
layer. If the wave propagates along the density gradi
(ky50), we find from the linear dispersion relatio
vph5v/k(x)→` when x→xc , which corresponds to the
mode cutoff and the reflection of the wave. In a steady st
the Airy field pattern forms a localized wave packet whi
interacts with the electrons traveling through it.

III. TEST PARTICLE SIMULATIONS

We analyze the electron behavior with simple test parti
simulations using an external prescribed wave field. T
electric field moves the electrons but is not affected by the
We assume an electron plasma wave which is traveling
allel to the density gradient in a linear density profile. T
phase velocity of the plasma wave is changing during pro
gation so that the wave-particle resonance condit
v5v/k covers a range of values in the velocity space. T
has a clear effect on the fast electron generation around
cutoff layer.

The normalized equations of motion for relativistic te
electrons are given by

dj

dt
5p~11p2!21/2, ~2!

dp

dt
5

qeE~j,t!

mevc
, ~3!

whereqe is the electron charge,me is the electron mass,E is
the electric field of the wave, andt5vt, j5vx/c, and
p5gv/c are the normalized time, space, and momentu
respectively. The relativistic Lorentz factor i
g5@12(v/c)2#21/2. The electric fieldE(j,t) for the elec-
tron plasma wave in Eq.~2! is taken to be the Airy-type
pattern E(j,t)5E0Ai$(k0xc)

2/3(j/jc21)%cost, where we
have assumedky50.

We assume that the plasma wave is excited at dens
from n(0)/nc50.5 to 0.6 with an initial phase velocity o
vph.0.33c which corresponds tovph.2.5ve when the elec-
tron temperature isTe510 keV. Figure 1~a! illustrates the
normalized electric fieldqeE/mevc of a reflecting plasma
wave in an inhomogeneous plasma. The cutoff layer is
j5180 showing the Airy enhancement of the electric fie
The enhancement of the wavelength near the cutoff is cle
seen in the field pattern of Fig. 1~a!.

Typical behavior of the electron momentum is shown
Fig. 1~b!. The initial momentum ispin50.3, which is inside
the trapping width of the wave potential. The trapped el
tron performs bounce motion in the wave potential and
accelerated with the increasing phase velocity. The das
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56 3517PARTICLE SIMULATIONS OF EFFICIENT FAST . . .
line gives the phase velocity of the electron plasma w
according to the linear Bohm-Gross dispersion relation. T
bounce-averaged electron velocity follows closely the ph
velocity until the electron escapes from the wave poten
with a larger momentum ofpout.1.8.

The maximum velocity of the accelerated electrons can
estimated from the largest wavelength in the Airy patte
We estimatelmax/2.x12x2, wherex1 and x2 are the first
and the second zero of the field to the left of the cutoff lay
The zeroes of the Airy function occur ata1.22.34 and
a2.24.09, where we have defined Ai(as)50, see Ref.
@10#. The maximum wavelength is approximately

lmax.2~a12a2!~xck0!1/3/k0 , ~4!

and the corresponding minimum wave number
kmin.1.8(k0xc)

21/3k0.

FIG. 1. ~a! Airy function solution of the electron plasma wave
a linear density profile, and~b! a trajectory of a typical single elec
tron traveling through the same wave packet. Dashed line show
phase velocity of the plasma wave obtained from the linear Bo
Gross dispersion relation.
e
e
e
l

e
.

r.

The ratio of the phase velocities at the cutoff layer and
x50 is approximately

vph~xc!

vph~0!
.0.56~k0xc!

1/3. ~5!

The interpretation of this result is simple. The smaller t
initial phase velocity, the larger the enhancement of
phase velocity near the cutoff layer. The longer the plas
with the linear density ramp, the higher the phase veloc
near the cutoff layer.

Figure 2 shows the final momentapout of an ensemble of
2000 test electrons traveling through the Airy-type wa
packet of Fig. 1~a! from the low density side. Test electron
are evenly distributed between the initial momentap in50.1
and 2. A remarkable feature is that practically all electro
betweenpin50.3 and 0.5 are accelerated to very high m
menta aroundpout51.5. The enhancement of the momentu
of these electrons ispout/pin.3.8. The corresponding en
hancement of the phase velocity estimated from Eq.~5! is
somewhat larger:vph(xc)/vph(0)54.6.

The effect shown in Fig. 2 is emphasized in a Maxwelli
plasma which has very few particles abovep50.5. Electron
velocity distribution behind the cutoff layer in a Maxwellia
plasma is illustrated in Fig. 3. It is obtained by assuming
Maxwellian distribution at the low density boundary so th
the initial phase velocity isvph.2.5ve . The Maxwellian
electrons travel through the same Airy-type wave packe
in the previous case. The resulting velocity distribution h
an isolated bump on the tail rather than a plateau becaus
accelerating wave scrapes all electrons above a certain v
and accelerates them to very high velocities ofv.6ve .

The main consequence is that the number of fast elect
may increase considerably because of this scraping effec
lower densities, the wave-particle interactions extend clo
to the bulk of the distribution, and a larger electron popu
tion will be trapped and further accelerated by the propag
ing wave.

he
-

FIG. 2. Final momenta versus initial momenta of an ensemble
2000 test electrons traveling up the density gradient through
Airy-type wave packet.
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3518 56KARTTUNEN, PÄTTIKANGAS, TALA, AND CAIRNS
IV. PARTICLE-IN-CELL SIMULATIONS

The interesting properties of the fast electron genera
that were found above were also investigated with the o
dimensional bounded electrostatic particle-in-cell simulat
code XPDP1 @11,12#. The code was modified to excite th
electron plasma wave by an external oscillating charge of
standing wave formr0(x)sin(kx)cos(vt), wherer0(x) is lo-
calized close to the low density boundary. In the pres
simulation, the width of the antenna was two wavelength

In the PIC simulation described below, the frequency
the plasma wave wasv51.106vp0, wherevp0 denotes the
plasma frequency at the location of the antenna. The w
number launched by the antenna wask0lD050.25, where
lD0 refers to the Debye length at the location of the anten
The wave number is low enough in the low density side
the plasma slab to allow the wave propagation up the den
gradient. The distance between the center of the antenna
the cutoff layer wasl 5163lD0, and the cutoff layer was
located atxc5196lD0. The scale length of the inhomogen
ity wasne0 /ne08 5734lD0, wherene0 andne08 are the density
and its derivative at the antenna, respectively. A fixed
background was assumed. The simulation geometry and
density profile are illustrated in Fig. 4, which shows the
cations of the antenna and the cutoff surface.

A generic problem of PIC simulations is the high noi
level caused by the fairly small number of discrete particl
The noise level reduces with increasing number of macro
ticles, which in the present simulation was 210 particles
cell corresponding to the total number of 315 000 electr
and ions. In order to reduce effects caused by the high d
sity boundary, the simulation box was chosen to extend w
beyond the cutoff layer. The total length of the simulati
box wasL5653lD0. To keep the noise level low enoug
fairly intense plasma waves were generated in the pre
simulation. Consequently, a perturbation in the charge d
sity having an amplitude of about 1.8% of the backgrou
ion charge density was used as an antenna.

Figure 5 illustrates the penetration of an electron plas
wave towards the cutoff layer. The electrostatic field

FIG. 3. Final velocity distribution of the electrons behind t
cutoff layer obtained for an initially Maxwellian ensemble of te
electrons in the case shown in Fig. 2.
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shown at two different instants:vp0t582 and 353. Figure
5~b! shows the wave when it has reached the cutoff surfa
and the Airy-type pattern starts to form. The increase in
phase velocity due to the increasing wavelength can be s
near the cutoff layer. The wave cannot propagate in the e
nescent region behind the cutoff and thus the noise level
be evaluated from the right-hand side of the cutoff layer.

The noise can be further reduced from the signals by
ing so-called interferograms which show the temporal cor
lation between a sinusoidal reference signal and an elec
static wave. Following Abe and Itatani@13# we define the
interferograms as

Es~x,t !5
2

tc
E

t2tc

t

sin~vt!E~x,t!dt, ~6!

Ec~x,t !5
2

tc
E

t2tc

t

cos~vt!E~x,t!dt, ~7!

wherev is the frequency of the antenna, and the correlat
time tc was typically chosen to be a few periods of the wav
An interferogram of the field is shown in Fig. 5~c!, where we
have chosenvtc58p. The decrease of the noise level b
hind the cutoff layer is quite clear.

The interferograms are applied to study the dispers
characteristics of the plasma wave in an inhomogene
plasma. The wave number and the phase velocity of the e
tron plasma wave in the density ramp were measured
determining the phase of the wave from the interferogra
defined in Eqs.~6! and~7!. First, the phase of the wave wa
calculated from

Q~x!5arctanS Ec~x,t !

Es~x,t D . ~8!

The wave number is then

k~x!5
DQ

Dx
, ~9!

and the phase velocity is obtained fromvph(x)5v/k(x). The
numerical differentiation in Eq.~9! was performed by fitting

FIG. 4. The electron and ion densities, when an electron pla
wave arrives at the critical layer. The square on thex axis indicates
the location of the external antenna, and the dashed line show
cutoff layer of the excited plasma wave. Because of the fixed io
the density profile does not change during the simulation.
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56 3519PARTICLE SIMULATIONS OF EFFICIENT FAST . . .
a straight line to 50 values ofQ(xi) by the method of leas
squares, and by calculating the slope of the line. This met
was found to reduce noise and oscillation in the derivativ

The phase of the wave in Fig. 5 is shown in Fig. 6~a!. The
slope of the phase decreases near the cutoff layer, and
respondingly the magnitude of the wave number also
creases, see Fig. 6~b!. The phase velocity is shown in Fig
6~c!, and the phase velocity obtained from the Bohm-Gr
dispersion relation is shown by a dashed line. The agreem
between these two curves is surprisingly good.

In the above analysis, the WKB approximation is us
and it breaks down near the cutoff layer. The maximu
phase velocity of the wave shown in Fig. 5 should be e
mated from Eq.~5!. The result isvph(xc)/v ph(x0)51.93,
wherex0 denotes the location of the center of the anten
This corresponds tovph(xc)58.5ve , which should be kept in

FIG. 5. Electric field of the propagating electron plasma wave
an inhomogeneous density profile at time~a! vp0t582 and ~b!
vp0t5353. The corresponding interferogram is shown at time~c!
vp0t5353.
d
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mind in the interpretation of Fig. 6~c!. Direct measuremen
of the last half wavelength in Fig. 5~c! gives the maximum
phase velocityvph(xc)58.7ve , which is in good agreemen
with the above analysis.

The increase of the phase velocity near the cutoff surf
is found to be similar to the test particle simulations d
scribed in Sec. III. Therefore somewhat similar generat
and acceleration of fast electrons can be expected in the
simulation.

V. FAST ELECTRON GENERATION
IN PIC SIMULATIONS

A basic difficulty with PIC simulations is that there ar
only a few particles in the tail of a Maxwellian velocit

n FIG. 6. Measurement of the phase velocity in the PIC simu
tion. ~a! The phase factor obtained from the interferograms.~b! The
wave number obtained by differentiation.~c! The corresponding
phase velocity; the dashed curve is the estimate obtained from
Bohm-Gross dispersion relation (vp0t5353,vtc58p).
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FIG. 7. Phase-space plot including a test electron ensemble for the fast electron diagnostics. The test electrons start to m~a!
vp0t5329, and the following four figures show the propagation of the ensemble at~b! vp0t5345, ~c! 348, ~d! 350, and~e! 353. The solid
curve shows the phase velocity estimated from the Bohm-Gross dispersion relation, and the dashed curves show the trapping w
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distribution. This problem was circumvented by following a
ensemble of test particles moving in the self-consistent fi
obtained from the PIC simulation. A similar idea has pre
ously been applied to Vlasov simulations by Ghizzoet al.
@14#. The test electrons experience the self-consistent fiel
plasma particles but their effect on the field is not taken i
account. Since the test particles do not contribute to
background field, they do not generate any artificial instab
ties. The test particles can be loaded to any volume in
phase space, and they can be let free at any time during
simulation. This is a valuable tool for PIC simulations of t
tail phenomena which often suffer from poor statistics.

In the PIC simulation, the phase-space behavior of t
ensembles of 20 000 test electrons was followed. The
electrons were let free at timevp0t5329 when the electron
plasma wave was fully developed. The initial velocities
the test electrons were evenly distributed between 4.1ve and
ld
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5.6ve , which is just above the local phase velocity. Initiall
the test electron ensemble was located just on the right-h
side of the antenna to avoid direct acceleration by the
tenna itself. The spatial width of the ensemble w
0.131l0, wherel0 is the wavelength of the plasma wave
the center of the antenna. The test electrons are seen
black rectangle in Fig. 7~a!, where the phase velocity of th
wave estimated from the Bohm-Gross dispersion relation
shown by the solid curve. The trapping width calculat
from the wave envelope at timevp0t5353 is shown by
dashed lines.

In Fig. 7, the acceleration of the test electrons when th
approach the cutoff layer is shown in detail. The electro
follow the increasing phase velocity of the wave quite ac
rately. When they arrive at the cutoff layer atxc5196lD0,
they are detrapped from the wave potential and start
stream freely in the region where the wave cannot penetr
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56 3521PARTICLE SIMULATIONS OF EFFICIENT FAST . . .
At this point their velocities are between 7ve and 10ve ,
which is in agreement with the maximum phase velocity
vph(xc)58.5ve calculated in the end of Sec. IV.

The trapping width around the phase velocity for the el
trons is given asv tr5u2qeE/kmeu1/2. In the present simula
tions, a typical electric field just behind the antenna is ab
uqeEu/mevc50.025, which corresponds to the trappin
width of v tr52.3ve and the upper limit of 6.7ve for the
trapped electrons. The test electrons reach, however, m
higher velocities up to 10ve , and therefore the acceleratio
is caused by the increasing phase velocity near the cu
layer.

The phase-space plots in Fig. 7 also show some acce
tion of background electrons and generation of a small po
lation of fast background electrons. The amplitude of
antenna is large enough to trap some thermal electrons
the background distribution even though PIC codes with
test particles have a fairly poor resolution in the tail pheno
ena.

The time evolution of the kinetic energy of the test ele
trons is shown in Fig. 8. The kinetic energy of the test po
lation has increased roughly by a factor of 4 when the e
trons arrive at the cutoff layer at timevp0t.353. After this,
the kinetic energy remains almost constant because the
particles have moved behind the cutoff surface where the
no electron plasma wave accelerating them. In the end
Sec. IV, we estimated that the enhancement of the ph
velocity is vph(xc)/vph(x0)51.9, which corresponds to en
hancement of the kinetic energy by a factor of 3.7. This is
fairly good agreement with the result shown in Fig. 8.

VI. EFFECT OF THE STEEPNESS
OF THE DENSITY GRADIENT

According to the simple scaling law in Eq.~5!, there are
two factors that affect the enhancement of the velocity of
trapped electrons in a linear density gradient; first, the ph
velocity ~or the wave number! in the region where the elec
tron plasma wave is generated; second, the distance from
region to the cutoff layer, i.e., the magnitude of the dens
gradient. In the following, we investigate the effect of t
density gradient on the fast electron generation by repea
the above simulation in a plasma with a gentle density g
dient and in a homogeneous plasma.

FIG. 8. The time evolution of the average kinetic energy of
test particle ensemble shown in Fig. 7.
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In the simulation with a gentle density gradient, the wa
parameters at the antenna were the same as in the simul
discussed above~i.e., k0lD050.25). The distance betwee
the antenna and the cutoff layer, however, wasl 5661lD0,
which is approximately by a factor of 4 larger than in th
previous simulation. Therefore the scale length of the in
mogeneity also was larger:ne0 /ne08 52937lD0. According to
Eq. ~5!, the expected enhancement of the phase velo
would in this case be much larger than in the previous sim
lation: vph(xc)/vph(x0)53.1. The number of electrons in thi
simulation was 1 500 000, which is 333 electrons per cel

The electric field obtained in a gentle density gradien
illustrated in Fig. 9. In contrast to the previous simulatio
the linear Landau damping is now important because
have made the distance from the antenna to the cutoff la
longer. The linear Landau damping length for the wave w
k0lD050.25 is LLD5313lD0, where we have defined
LLD5vg /g, and g is the imaginary part of the frequency
Since the distance from the antenna to the cutoff laye
larger by a factor of 2 than the damping length, the wa
amplitude decreases near the cutoff layer.

The generation of fast electrons was again investigated
following an ensemble of test electrons that were initia
located near the antenna with evenly distributed veloci
between 3.5ve and 4.9ve . The time evolution of the kinetic
energy of the test electrons that were let free at ti
vp0t51640 is shown in Fig. 10. The increase of the kine
energy is modest in this case because the wave is sig

FIG. 9. Interferogram of the wave amplitude in the gentle de
sity gradient at timevp0t51643.

FIG. 10. The time evolution of the average kinetic energy o
test particle ensemble in the gentle density gradient.
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cantly damped before the cufoff layer. Therefore a large p
of the electrons becomes detrapped before they are acc
ated.

Some generation of the fast background electrons oc
in this case because of the Landau damping of the wave
time vp0t51643, a plateau is formed in the velocity distr
bution of the background electrons as is shown in Fig.
Note that the fast electrons generated in the underde
plasma travel to the region behind the cutoff layer with v
locity that is approximately equal to the phase velocity of
wave. Therefore the velocity distribution has been plotted
the region 496lD0<x<1487lD0.

In a homogeneous plasma, the acceleration caused b
increasing phase velocity should disappear. The Lan
damping of the wave launched into a homogeneous pla
with wave numberk0lD050.25 is illustrated in Fig. 12. The
test electrons were again initially located near the ante
with velocities between 3.5ve and 4.9ve , and they were let
free at timevp0t52300. As was expected, their energy d
not increase when they traveled through the simulation b
as can be seen from Fig. 13.

VII. A PHENOMENOLOGICAL MODEL
FOR THE ‘‘DRAG DAMPING’’

In the test particle calculations of Sec. III and PIC sim
lations of Secs. V and VI, some of the electrons were trap
in the potential well of a wave with increasing phase velo

FIG. 11. Velocity distribution of the electrons in the regio
496lD0<x<1487lD0 at timevp0t51643 in the gentle density gra
dient.

FIG. 12. Interferogram of the wave amplitude in a homogene
plasma at timevp0t52137.
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ity. Since these electrons were found to gain energy,
wave must be damped. In the following, we will presen
phenomenological model for this damping mechanis
which we will call ‘‘drag damping’’ because the wave wit
an increasing phase velocity drags the electrons to hig
velocities.

A. ‘‘Drag damping’’ of a Langmuir wave

Consider a wave with a slowly varying amplitude an
wave number:

E~x,t !5E~x!cos@k~x!x2vt#. ~10!

Energy flux of the wave isSw(x)5vg(x)W(x), where the
energy density is

W~x!5
1

4
«0F11

vp
2~x!

v2 GE2~x!. ~11!

We first consider the propagation of the wave in the a
sence of damping. In steady state, we must then have
stant energy fluxSw(x) in the region 0<x<xc . We can
solve for the wave amplitude, which is

END
2 ~x!5E0

2S u0

u~x! D
3 2u0

223

2u2~x!23
, ~12!

where the subscript ‘‘ND’’ stands for ‘‘no damping,’’ and
E0 is the wave amplitude atx50. The normalized phase
velocities are

u~x![
vph~x!

ve
5S 3nc

nc2ne~x! D
1/2

, ~13!

u0[
vph~0!

ve
5S 3nc

nc2n0
D 1/2

, ~14!

wheren0 andnc refer to the electron densities atx50 and at
the cutoff layer, respectively.

With the aid of Eqs.~13! and ~14! the amplitude in Eq.
~12! can be written as

END
2 ~x!5E0

2S nc2n0

nc2ne~x! D
1/2S nc1n0

nc1ne~x! D . ~15!s

FIG. 13. The time evolution of the average kinetic energy o
test particle ensemble in a homogeneous plasma.
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In a linear density gradient, we obtain

END
2 ~x!5E0

2S 11
nc2n0

nc1n0

x

xc
D 21S 12

x

xc
D 21/2

. ~16!

Equations~12!–~16! describe the enhancement of the wa
amplitude when the group velocity decreases near the cu
layer.

Consider next those electrons that are trapped and tr
with the wave when the phase velocity increases. Averag
over the bounce motion of the electrons we find that th
energy flux is

Sp~x!5
1

2
ntrmevph

3 ~x!, ~17!

where ntr is the density of the trapped electrons traveli
with the wave. For simplicity, we shall assume that the d
sity of the trapped electrons is constant, i.e., it does not
pend onx. This assumption is valid only if the wave ampl
tude does not vary too much during the propagation. We
then estimate

ntr5n0E
vph~0!2v tr~0!

vph~0!1v tr~0!

f ~v !dv, ~18!

wherev tr is the average trapping width.
When f (v) is the Maxwellian distribution, the integral in

Eq. ~18! can be written in terms of the error function:

ntr5
1

2
n0FerfS u0

A2
1Au0w0D 2erfS u0

A2
2Au0w0D G ,

~19!

where the normalized oscillation velocity is

w0[
vosc~0!

ve
5

eE0

mevve
. ~20!

In the limit of a small trapping width (v tr /ve5A2u0w0
!u0), we obtain by the Taylor expansion the expected
sult:

ntr.2n0f „vph~0!…v tr~0!5
2n0

Ap
~u0w0!1/2exp~2u0

2/2!.

~21!

Since some of the electrons are accelerated with the
creasing phase velocity, they must obtain energy from
wave. Therefore, the wave must be damped. Let us ass
for a while that all other damping mechanisms can be
glected. In steady state, we then have

Sw~x!1Sp~x!5 const. ~22!

Solving again for the amplitude we obtain

E2~x!5END
2 ~x!RD~x!, ~23!

where the damping factor is
ff

el
g

ir

-
e-

n

-

n-
e

me
-

RD~x!512
Sp~x!2Sp~0!

Sw~0!
. ~24!

Note that we obtain the nondamped result in Eq.~15! if no
electrons are accelerated with the wave, i.e.,Sp(x)[Sp(0).

The damping factor can be written as

RD~x!512r 0F S u~x!

u0
D 3

21G , ~25!

where r 0 is the initial ratio of the energy fluxes
r 05Sp(0)/Sw(0). In a linear density gradient, we obtain

RD~x!512r 0F S 12
x

xc
D 23/2

21G . ~26!

The factorr 0 is obtained for any density profile with th
aid of Eqs.~11! and ~17!. We find

r 05
2

3

u0
4

w0
2

u0
223

2u0
223

ntr

n0
, ~27!

wherentr is given by Eq.~19! or ~21!. By using the Bohm-
Gross dispersion relations in Eqs.~13! and~14!, the damping
factor in Eqs.~25!–~27! can be written in terms of the den
sities:

r 05
6

w0
2S 12

n0

nc
D 22S 11

nc

n0
D 21 ntr

n0
. ~28!

The effect of drag damping on the wave amplitude
illustrated in Fig. 14 for different amounts of trapped ele
trons traveling with the wave. In the undamped ca
(r 050), the amplitude obtained from the WKB calculatio
diverges near the cutoff layer. When the energy of
trapped electrons is a few percent of the wave energy,
wave is significantly damped near the cutoff layer.

Since the phase velocity obtained from the WKB appro
mation approaches infinity near the cutoff layer, Eqs.~25!
and ~26! overestimate the strength of the effect. The acc
eration of the electrons and the damping stops at the p

FIG. 14. The wave amplitude near the critical layer, when
trapping factor isr 050, 0.01, 0.035, 0.07, 0.15. Only drag dampin
is taken into account (k0lD050.25,n0 /nc50.82).
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where the phase velocity achieves its maximum value gi
in Eq. ~5!. In WKB approximation, this phase velocity i
achieved at

xmax

xc
.120.31~k0xc!

22/3. ~29!

Taking the parameters of the PIC simulation in Sec. V,
obtainxmax/xc.0.97.

Note that in the derivation of drag damping we have us
very general energy conservation arguments which appl
any slowly varying density profile. The only limitation is th
WKB approximation in Eq.~10!.

B. Comparison with the Landau damping

Drag damping is important only in situations where it
stronger than other damping mechanisms. In the followi
we compare drag damping with the linear Landau damp

Assume for a while that the linear Landau damping is
only damping mechanism. Then Eq.~23! should be replaced
by

E2~x!5END
2 ~x!RL~x!, ~30!

where

RL~x!5exp@2I ~x!#, ~31!

I ~x!5E
0

x

ki~z!dz. ~32!

The imaginary part of the wave number
ki(x)5g(x)/vg(x), where g is the imaginary part of the
frequency.

At small values of the wave number (klD&0.25), the
damping decrement can be approximated as

g~x!52
1

2
Ap

2

vp
4~x!

k3~x!ve
3

exp@2u~x!2/2#. ~33!

In Eq. ~33!, we approximatevp
4(x).v4, which overesti-

mates the Landau damping. The imaginary part of the w
number is then

ki~x!52
1

6
Ap

2
lD,c

21 u4~x!exp@2u2~x!/2#, ~34!

wherelD,c is the Debye length at the cutoff layer.
With the aid of the Bohm-Gross dispersion relation, w

now obtain

I ~x!52
1

2
Ap

2

nc

lD,c
E

u0
2

u2~x! 1

ne8~x!
exp~2z/2!dz. ~35!

If we assume that the spatial derivative of the density d
not vary too much@ne8(x)5const#, we can take it outside the
integral. We then obtain

I ~x!.2Ap

2 S nc

ne8~xc!lD,c
D $exp@2u2~x!/2#
n

e

d
to

,
g.
e

e

s

2exp@2u0
2/2#%, ~36!

which can again be written in terms of the densities by us
Eqs.~13! and ~14!.

Drag damping can be considered important when
damping factor in Eq.~25! is of the same order as the Landa
damping factor in Eq.~31!. Often we will have both damping
mechanisms present, and instead of Eqs.~23! and ~30! we
have to estimate the amplitude from

E2~x!5END
2 ~x!RD~x!RL~x!. ~37!

The damping factors in linear Landau damping and d
damping are illustrated in Fig. 15 for steep and gentle den
gradients. The linear Landau damping is important only
the low density region where the wave number is close to
initial valuek0lD050.25. When the wave has propagated
the high density region and the wave number is small eno
(klD0,0.20), no damping occurs any more. In the ste
density gradient of Fig. 15~a!, the region where Landau
damping is important~i.e., klD0.0.20) is so short that the
damping factor saturates at the level ofRL.0.8. In the gentle

FIG. 15. Damping factors near the critical layer in steep a
gentle density gradients. Effects of drag damping~dashed line!,
Landau damping~dotted line!, and their combination~solid line! are
shown when the length of the plasma is~a! xc /lD,c5180, ~b!
xc /lD,c5720 (k0lD050.25, r 050.044).
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density gradient of Fig. 15~b!, Landau damping is efficient in
a longer region and the saturation level isRL.0.4.

In Fig. 15, the drag damping is most efficient near t
cutoff layer where the damping factorRD decreases to zer
in both cases. The total damping given by the product of
damping factorsRLRD is dominated by the Landau dampin
in the low density region and by the drag damping near
cutoff layer. In a gentle density gradient, only a sm
amount of energy is left in the wave to accelerate electr
near the cutoff layer because most of the energy is alre
absorbed in the low density region.

The steep density gradient in Fig. 15~a! is similar to the
density gradient of the simulations in Secs. IV and V, wh
strong generation of fast electrons near the cutoff layer
found. The result in Fig. 15~a! is in qualitative agreemen
with the results of the PIC simulations because the d
damping is the dominating damping mechanism. The ge
density gradient in Fig. 15~b! corresponds to the density gra
dient in Sec. VI, where the generation of fast electrons w
found to be weak. This is again in qualitative agreement w
the result shown in Fig. 15~b!, where the wave is dampe
mainly by linear Landau damping.

The wave amplitude obtained from Eq.~37! is illustrated
in Fig. 16 in the case of a gentle density gradient. In the l
density region, the linear Landau damping is the dominat
effect. At medium densities, the Airy swelling caused by t
decreasing group velocity starts to be important. Near
critical layer, the drag damping dominates.

VIII. SUMMARY AND DISCUSSION

Particle-in-cell simulations of fast electron generation
a propagating electron plasma wave in an inhomogene
plasma have been performed. The density profile was ta
linear so that the phase velocity of the electrostatic plas
wave varied locally. Self-consistent PIC simulations we
complemented by simple test particle calculations with a p
scribed electrostatic wave having a form of the Airy fun
tion.

FIG. 16. The wave amplitude near the critical layer, when
trapping factor isr 050.01, 0.05, 0.2. Both drag and Landau dam
ing are taken into account (k0lD050.25, n0 /nc50.82,
xc /lD,c5720).
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The simulations show clearly that the electrons trapp
into the wave potential at lower densities travel trapped w
the wave, and are further accelerated when the plasma
sity and the phase velocity of the wave increase. This le
to considerably higher electron energies than in a homo
neous plasma where the phase velocity is constant and
upper limit of the electron velocity is determined by the tra
ping width in velocity. The enhancement of the phase vel
ity and the velocity of the trapped electrons was found to
approximatelyvph(xc)/vph(0).0.56(k0xc)

1/3, where xc is
the length of the underdense plasma andk0 is the initial
wave number.

PIC simulations were performed in both steep and ge
density gradients. In a steep density gradient, the trap
electrons were found to follow the increasing phase veloc
of the wave. Behind the cutoff layer, the velocities of t
accelerated electrons were found to be in rough agreem
with the enhanced phase velocity obtained from the form
given above. Novel test particle diagnostics were used in
PIC simulations to follow the acceleration of an ensemble
trapped test electrons through the cutoff layer.

In a gentle density gradient, the linear Landau damp
was found to be important because the Landau damp
lengthLLD5vg /g was small compared to the length of th
underdense plasma, i.e.,LLD&xc . Since the wave was al
ready damped when it reached the cutoff layer, the gen
tion of fast electrons was not very strong.

Note that in the calculations presented above the ini
wave number wask0lD050.25. If a smaller wave numbe
had been chosen, for instance,k0lD050.20, the linear Lan-
dau damping would not have been important even in fa
gentle density gradients. This could make it possible to
tain acceleration also in these cases. Such simulations w
be, however, very demanding because of the large numbe
particles needed in long plasmas. In addition, the small gr
velocity of the wave with a small wave number would le
to very long simulations.

Since the electrons trapped in the wave potential w
found to gain energy, the wave must be damped. We h
called this damping mechanism drag damping because
wave with an increasing phase velocity drags the electron
higher velocities. A phenomenological model for the dr
damping was presented which describes the energy bal
between the wave and the accelerating electrons in a st
state. The strength of the drag damping was compared
the linear Landau damping which was found to dominate
gentle density gradients if the initial wave number is lar
(k0lD0*0.22). The phenomenological model was found
be in a qualitative agreement with the PIC simulations. T
model could be improved by taking into account that t
changes in the wave amplitude lead to changes in the t
ping width and in the number of the trapped electrons. T
improvement would lead to a set of coupled different
equations describing the wave-particle interaction near
cutoff layer.

The present test particle model and the PIC simulati
are relevant to the nonlinear laser-plasma interactions in
underdense plasma region where large amplitude Langm
waves are generated by parametric instabilities. The ana

e
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shows that the fast electron properties may change cons
ably in the presence of a density gradient as is the case in
realistic conditions. The main result is that the number
very fast electrons may increase substantially becaus
lower densities the wave-particle interaction takes pl
closer to the bulk electrons, and the trapped particles wil
further accelerated by the propagating wave.
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